- (II) at the receiver,
 - (a) receiving said nonlinear acquisition composite code.
 - (b) generating a plurality of linear reference component codes, $R_1, R_2, \ldots R_n$, that correlate respectively with said linear acquisition component codes, $C_1, C_2, \ldots C_n$,

(c) combining said reference component codes to form a linear third composite code in accordance with said first composition rule,

- (d) nonlinearizing said third composite code in a manner identical to that of said (I,c) nonlinearizing step to form a nonlinear fourth composite code.
- (e) correlating said reference component codes, R_1 , 15 R_2 , ... R_{n-1} , with said nonlinear acquisition composite code by shifting the phases of said reference component codes, R_1 , R_2 , ... R_{n-1} , and
- (f) correlating said nonlinear fourth composite 20 code with said nonlinear acquisition composite code by shifting the phase of the remaining reference component code, R_n .
- 8. The coding method as recited in claim 7, wherein: said first composition rule is a modulo-2 addition rule; 25 and
- said second composition rule is a Boolean majority voting rule.
- 9. The coding method as recited in claim 7, wherein: said (I,c) nonlinearizing step comprises applying said 30 linear first composite code to an encrypter operating in a decrypt mode to form said nonlinear second composite code; and

said (II,d) nonlinearizing step comprises applying said linear third composite code to an encrypter operating in a decrypt mode to form said nonlinear fourth composite code.

10. The coding method as recited in claim 7, wherein: said (I,d) combining step comprises time delaying said acquisition component codes, C₁, C₂, . . . 40 C_{n-1}, and combining said delayed codes with said

nonlinear second composite code to form said nonlinear acquisition composite code in accordance with said second composition rule; and

- said (II,e) correlating step comprises time delaying said reference component codes, $R_1, R_2, \ldots R_{n-1}$, by the same amount that said acquisition component codes, $C_1, C_2, \ldots C_{n-1}$, are time delayed and correlating said delayed reference component codes with said nonlinear acquisition composite code.
- 11. The coding method as recited in claim 7, further comprising the steps of:
 - (II) at the receiver,
 - (g) combining said linear reference component codes, R_1 , R_2 , . . . R_{n-1} , with said nonlinear fourth composite code in accordance with said first composition rule to form a nonlinear fifth reference composite code, and
 - (h) correlating said nonlinear fifth composite code with said nonlinear acquisition composite code;
 (I) at the transmitter,
 - (f) combining said linear acquisition component codes, C_1 , C_2 , ... C_{n-1} , with said nonlinear second composite code in accordance with said first composition rule to form a nonlinear data-carrying composite code, and
 - (g) transmitting said nonlinear data-carrying composite code; and
 - (II) at the receiver,
 - (i) receiving said nonlinear data-carrying composite code, and
 - (j) correlating said nonlinear fifth reference composite code with said nonlinear data-carrying composite code.
- 12. The coding method as recited in claim 11, wherein:
 - said first composition rule is a modulo-2 addition rule;
 - said second composition rule is a Boolean majority voting rule.